Sharp characters with irrational values

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of irrational zeta values

In this paper we refine Ball-Rivoal’s theorem by proving that for any odd integer a sufficiently large in terms of ε > 0, there exist [ (1−ε) log a 1+log 2 ] odd integers s between 3 and a, with distance at least aε from one another, at which Riemann zeta function takes Q-linearly independent values. As a consequence, if there are very few integers s such that ζ(s) is irrational, then they are ...

متن کامل

Flat Connections for Characters in Irrational Conformal Field Theory

Abstract Following the paradigm on the sphere, we begin the study of irrational conformal field theory (ICFT) on the torus. In particular, we find that the affine-Virasoro characters of ICFT satisfy heat-like differential equations with flat connections. As a first example, we solve the system for the general g/h coset construction, obtaining an integral representation for the general coset cha...

متن کامل

Mean Values with Cubic Characters Stephan Baier and Matthew

We investigate various mean value problems involving order three primitive Dirichlet characters. In particular, we obtain an asymptotic formula for the first moment of central values of the Dirichlet L-functions associated to this family, with a power savings in the error term. We also obtain a large-sieve type result for order three (and six) Dirichlet characters.

متن کامل

Characters of Symmetric Groups: Sharp Bounds and Applications

We provide new estimates on character values of symmetric groups which hold for all characters and which are in some sense best possible. It follows from our general bound that if a permutation σ ∈ Sn has at most n cycles of length < m, then |χ(σ)| ≤ χ(1) for all irreducible characters χ of Sn. This is a far reaching generalization of a result of Fomin and Lulov. We then use our various charact...

متن کامل

Counting with Irrational Tiles

We introduce and study the number of tilings of unit height rectangles with irrational tiles. We prove that the class of sequences of these numbers coincides with the class of diagonals of N-rational generating functions and a class of certain binomial multisums. We then give asymptotic applications and establish connections to hypergeometric functions and Catalan numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1996

ISSN: 0025-5645

DOI: 10.2969/jmsj/04830567